

METAMATERIALS for advanced applications

METAMATERIALS

are made from assemblies of multiple elements fashioned from **composite materials** such as metals or plastics. The materials are usually arranged in **repeating patterns**, at scales that are smaller than the wavelengths of the phenomena they influence.

METASURFACES represent the **2D version of metamaterials**. They have been applied to large number of scenarios.

Free Space has developed a prominent background on this subject and is able to propose industrial solutions for a large variety of applications, as for instance:

METASURFACES

Metasurfaces and frequency selective surfaces (FSS)

Ultrathin e.m. **wave absorbers** (narrowband or wideband)

Artificial Impedance Surfaces (**AIS**) and **Bandgap** surfaces

Tunable **AIS**

Wide Angle Impedance Matching layers (WAIM) Kicelus Pover I ranfu (KPT)

ANTENNAS AND SENSORS

Reflectarrays

Low-profile antennas

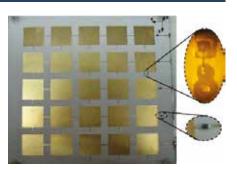
Low RCS antennas

RFID sensors

Magnetic Resonance coils

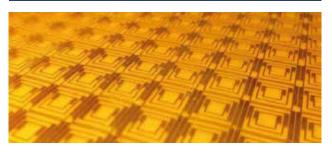
Biomedical RF devices

Free space can provide a complete electromagnetic characterization of materials and metamaterials through novel extraction algorithms from DC to K band.

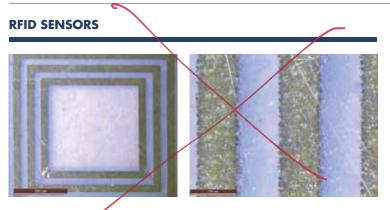

ARTIFICIAL IMPEDANCE SURFACES AND BANDGAP SURFACES

High Impedance surfaces

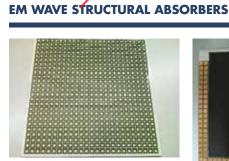
TUNABLE AIS


AIS loaded withvaractors

LOW-PROFILE ANTENNAS


Dipole backed by a tunable AIS

WIDE ANGLE IMPEDANCE MATCHING LAYERS (WAIM)


REFLECTARRAYS

Three-band reflectarray antenna

Inkjet printed chipless humidity sensor

EM absorbers with lossy or metallic FSS

WIDEBAND POLARIZERS

Genetically optimized metasurface for wideband polarization conversion

backed by EM absorber

WE PROVIDE HIGH LEVEL SUPPORT FOR INTEGRATING METAMATERIALS IN CONVENTIONAL ELECTROMAGNETIC SYSTEMS.

Contact us for exploring unveiled possibility to improve your technology